Fin regeneration from tail segment with musculature, endoskeleton, and scales.

نویسندگان

  • Jinhui Shao
  • Xiaojing Qian
  • Chengxia Zhang
  • Zenglu Xu
چکیده

It is well known that fish caudal fins can be completely regenerated after fin amputation. Although much research on fin regeneration has been carried out, there have been very few reports regarding fin regeneration after tail amputation. In this study, we used grass carp, common carp, koi carp, and zebrafish as experimental organisms. Some caudal fins could be distinctly regenerated in 2 weeks after tail amputation. After all-trans-retinoic acid treatment and tail amputation, zebrafish were unable to regenerate caudal fins that could be seen with the naked eye. However, after tail amputation, more than half of the zebrafish tested were able to regenerate caudal fins. Caudal fin regeneration depended on the presence of musculature and endoskeleton at the site of amputation. These caudal fins arose from segments of the endoskeleton, which contrast with currently accepted knowledge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Full regeneration of the tribasal Polypterus fin.

Full limb regeneration is a property that seems to be restricted to urodele amphibians. Here we found that Polypterus, the most basal living ray-finned fish, regenerates its pectoral lobed fins with a remarkable accuracy. Pectoral Polypterus fins are complex, formed by a well-organized endoskeleton to which the exoskeleton rays are connected. Regeneration initiates with the formation of a blast...

متن کامل

Caudal fin shape modulation and control during acceleration, braking and backing maneuvers in bluegill sunfish, Lepomis macrochirus.

Evolutionary patterns of intrinsic caudal musculature in ray-finned fishes show that fine control of the dorsal lobe of the tail evolved first, followed by the ability to control the ventral lobe. This progression of increasing differentiation of musculature suggests specialization of caudal muscle roles. Fine control of fin elements is probably responsible for the range of fin conformations ob...

متن کامل

Speed-dependent intrinsic caudal fin muscle recruitment during steady swimming in bluegill sunfish, Lepomis macrochirus.

There are approximately 50 muscles that control tail fin shape in most teleost fishes, and although myotomal muscle function has been extensively studied, little work has been done on the intrinsic musculature that controls and shapes the tail. In this study we measured electrical activity in intrinsic tail musculature to determine if these muscles are active during steady rectilinear locomotio...

متن کامل

Capturing Tissue Repair in Zebrafish Larvae with Time-lapse Brightfield Stereomicroscopy

The zebrafish larval tail fin is ideal for studying tissue regeneration due to the simple architecture of the larval fin-fold, which comprises of two layers of skin that enclose undifferentiated mesenchyme, and because the larval tail fin regenerates rapidly within 2-3 days. Using this system, we demonstrate a method for capturing the repair dynamics of the amputated tail fin with time-lapse vi...

متن کامل

The development of the paired fins in the Zebrafish (Danio rerio)

In the present study, we describe the structure and normal development of the zebrafish (Danio rerio) paired fins. Particularly, we focus on the structure of the apical epidermis and on endoskeletal morphogenesis. Endoskeletal development proceeds differently in the pectoral and pelvic fins. Whereas in both fins major parts of the endoskeletal girdle develop within the fin bud mesenchyme, the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental zoology. Part B, Molecular and developmental evolution

دوره 312 7  شماره 

صفحات  -

تاریخ انتشار 2009